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SUMMARY

£

This memorandum outlines the mathematical formulation of a
polarimetric theory for radar scattering. The emphasis is placed
on physical interpretation of some fundamental results from the
theory of nonsingular linear transformations and the general
scattering problem treated as a geometrical transformation on the
Poincaré sphere,

An introduction to second order statistical effects in
polarimetric scattering is also provided via the coherency matrix
and Stokes vector. The matrix governing transformation of these
second order parameters is related to the elements of the
coherent scattering matrix. ,{ o

This memorandum was derived from a set of lectures given by
the author at Birmingham University in July 1983,
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INTRODUCTION

When an object of arbitrary size, shape and material scatters an incident
electromagnetic wave, measurement of the parameters of the scattered field may
be used to yield information about that object. One very important parameter
of the wave which has not been fully exploited in the past is its polarisation,
On the whole radars havc measured amplitude, phase and doppler shift of targets
but have remained fixed polarisation devices and thus have not obtained the
maximum available information, even for a fixed frequency and aspect. The
capability of obtaining complete polarimetric information is therefore an
attractive feature, and how this information may be gathered and best used is

the subject of these lectures.

Although polarimetric techniques have found widespread use in optical
instrumentation and matevials amnalysis for many years, the relevance of polari-
metric phenomena to microwave scattering has remained primarily a topic of
theoretical interest only. This is unfortunate since at longer wavelengths
polarisation is a more significant parameter in scattering than it is in optics
and as such promises to yield a considerable amount of target information.,

Since polarisation may be described as the spatially directive quality of a wave
then knowledge of the scattering characteristics of an object might be expected

to yield information relating to target symmetry, geometry and material properties.
As a simple example consider rain clutter suppression radars which transmit and
receive like sense circular polarisation on the basis that this will cancel the
backscatter from spherically symmetrical raindrops. It will be shown in the
course of these lectures how more subtle indicators of target symmetry may be

derived from knowledge of the polarisation transforming properties of the target.

Recently there is a great deal of interest in optimising radar system
performance and in target identification studies both of which require a more
exact target descriptor than the conventional fixed polarisation radar cross

(1)

section ’. One way of providing this is to describe the target by a polarisation

scattering matrix of finite dimensions with manipulation of this matrix in the

-radar signal processing yielding target information. Essentially this means

that the transmit/receive antenna assembly no longer acts as a polarisation
filter but collects full polarimetric information and allows all filtering to be
performed in the processing(6). With ongoing advances in the field of digital
and analogue signal processing technology this allows for practical exploitation

of polarimetric information.
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The importance of developing a full polarimetric theory for radar scattering
was realised in the late nineteen forties. In particular E.M. Kennaugh demon-
strated the importance of polarimetric techniques when, in a series of reports
written between 1949 and 1954(2), he introduced the important concept of null or
optimal polarisations for radar targets. It was Sinclair(3) in 1948 who was the
first to describe the polarisation transformation properties by a 2 x 2 coherent
scattering matrix. At about the same time Mueller(a) developed a more general
matrix calculus for handling partially polarised waves in optics. This calculus,
based on Stokes vectors was applied to radar scattering much later by J.R. Huynen(s)
and allows a polarimetric theory to be developed for handling radar scatter from
fluctuating targets like chaff or clutter. More recent developments have seen
the practical implementation of programmable polarisation filter design and its
use for more efficient suppression of rain clutter(7). Significant theoretical
work on incorporating polarimetric techniques with broadband scattering theories
has been done by Boerner(e). Despite these advances the full potential of polari-
metric techniques has still not been realised and one can only speculate as to the
future. Certainly the next decade will see the emergence of more and more radar

systems utilising polarisation for optimised performance.

POLARISATION DEFINITIONS

Before undertaking a full polarimetric description of target scattering it
is necessary to consider the various methods used to describe the polarisation
of a wave. In this chapter we shall cover three methods: firstly, the orthogonal
component decomposition for plane monochromatic waves. The geometrical parameters
of the polarisation ellipse will then be related to these plane wave parameters
since the former are useful when considering graphical aids to polarisation
problems. Finally, the more general Stokes vector formalism shall be developed

and related to the other representations through the Poincaré sphere.

In the most general case a propagating electromagnetic wave has six field
components, namely three mutually perpendicular electric and magnetic field
vectors (E. E. E_ H H H_ ). For most radar applications, however, it is

Xy ¥y 2y Xy ¥, 2
sufficient to consider only the case of plane time harm.nic waves travelling in

free space so that in general we may write the field as
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E = a, cos(y + Gx) - la Ex,y, = n Hy’x'

n = impedance of free space = 120 7

Ey - ay cos(y + Gy) -1 ¢ = ut - kr

§ , 8 = instantaneous phase of Ex

X y ’
components at t = 0
Ez = Q0 w = angular frequency
2n
k = —A—

r = range from source

Here, x,y,z is a right handed set of cartesian co-ordinates with the direction

of propagation of the wave in the z direction.

1f the plane wave assumption is relaxed to allow partially polarised waves

where a &, § , 6y are functions of time then the wave must be

y' x
specified by its second order statistics or coherency matrix(g)

<EE * <EE™
X X Xy
J = <> = time average
<E_.*E > <E E *>
X vy Yy

Note, significantly, that J is Hermitian and so may be written in the general

a b~ic
b+ic d

"Thus four real numbers (a,b,c,d) are required to specify the second order

form

statistics of the wave.
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1. ORTHOGONAL COMPONENT DECOMPOSITION

The polarisation of a plane monochromatic wave is defined as the locus of
the electric field vector (Ex+Ey) in a plane perpendicular to the direction of
propagation. In general the vector direction will change as a function of time,
and according to IEEE standard(lo),when observed along a line of sight anti-
parallel to the direction of propagation is called left handed polarisation if

it rotates clockwise and right handed if counter clockwise. If the E vector

ey _ 5 v 3 W b ¢

TEBL

l'l

does not rotate at all, the wave is said to be linearly polarised.

- v g .
1%

In order to derive an expression for this locus for arbitrary a ,a ,éx,d
combine equations la and 1b so as to eliminate w‘9>. When this is done the
equation for the locus is

E, 2 E \2 EE )
=] o+ [ L -2——zcosd = gin“é é = § - §
a ay axay xy Xy xy y X

y
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This is the equation of an ellipse for which linear and circular polarisations are 5
special cases. In general, the wave may be represented by the two component F

column vector

3
N

Ex i x 3x XY a(res))

E = = Re e X
R Jéx )
Ey Ty ay e Y. y

When considering only the state of polarisation of this wave then use will be

made of the column vector

RIS 3 DS Fad | SRl

. R N

P = Lo

. Jé xy ﬁ;

&j "‘:u

I\‘

-~

o,

Formally, this vector, each element of which is complex, forms a spinor and much o
of what follows finds elegant interpretation in terms of spinor algebra(ll). ii
Note that in the above notation x and y may be any two orthogonal polarisations :i
of which horizontal and vertical and left and right circular are common examples. :%
Lo

Ir general any pair of elliptical polarisations will suffice as long as they :}
o
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satisfy the orthogonality condition

-~

Each pair forms a so-called polarisation base written (x,y). Any polarisation P

may then be represented in terms of a complex combination of these components

P = A, + B§ X,y - unit orthogonal vectors

A,B - complex coefficients determining P

Of interest is to consider how to express P in terms of an arbitrary base (x',y')
when it is known in terms of (x,y). The most general transformation (x',y') from
(x,y) has the following normalisation and orthogonality conditions

x' o x'* = ]

y' e y'k = 1

x' «y'* = 0
The transformation will be linear and so may be written

x' = P;(...Q;'

P,Q,R,S will be complex
y' = R; + S5
y

In order to satisfy the above conditions this transformation will have the
general form

~ ie " i¢2 - 0
x' = cosa e X + sina e y 0<a <9
. i¢,y | i¢, | o
y' = -ginB e X + cosB e y 0< Bg< 90
From the orthogonality condition
i(é,-¢,) i(¢,-¢,)
-cosa sinB e 1737, sina cosB e 274, 0
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This leads to the conditions

01" #3 " ¢, - ¢,

Further, we can set ¢1 = ¢4 = 0 without loss of generality and so can write the

transformation in matrix notation as

~ . Jé ~
X cosa sina e p's
" 1) = ¢
y' —sina e 7% cosa y 3
This may also be written
1 tana eJG

[T] = cosa ¢
-tana e 1

At this point is is useful tc introduce the complex polarisation ratio defined
as

J¢p

o= 5= lo e

This ratio defines P in terms of the ratio of the complex coefficients A and B.

From this definition and the general form of [T] it is evident that

p = tano e‘hS
where ’%' = tano 0< a< 90°
(o]
¢B ¢A 8 0< § < 360

The geometrical significance of the two angles a,8 will be discussed later in

this chapter when considering the Poincaré sphere. Note that in terms of o

cosa = (1 + pp"f)-4
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This then allows us to write [T] , the transpose of [T], which governs the trans-

formation of coefficients of (x §) as

-nk
Y1+pp* 1

2. GEOMETRICAL PARAMETERS

A convenient method of representation of the polarisation ellipse is in
terms of its inclination angle 6 (0 < 8 < 180°) and ellipticity angle T
(-45° € 1 < 45°) as defined in Figure 1. By convention, positive values of 1
correspond to left harnd polarisations and negative values right hand. The

amplitude of the wave is defined as in Figure 1.

In order to express an arbitrary state of polarisation P in matrix form
consider firstly that the x,y axes in Figure 1 are aligned with the major and

minor axes of the ellipse respectively. From the definition of T we can write

a_ cos wt a cosT coswt a cosrt
X Juwt
E - - = Re e
a_ cos(ut+d_ ) ~-a sinT sinwt Ja sint
y Xy w
In complex notation
. cosT
P = a
J sint
-
o . ,
iu;- For the general case where the major axis of the ellipse makes an angle 6 with
‘.\'.‘ [ [ £ +
AN the axes, this column vector is multiplied by the transformation matrix for
s rotations in 2-dimensions to yield
L4
DY R cos® -sin@|| cost .
b e P = a = P(a,f,1)
ot sind cos8]JLJ sint
J}{ In terms of these geometrical parameters, the orthogonal polarisation to P(a,6,T)
.
e is defined as
MY




fl = ?(a, 8 + %3 -1)

In other words an ellipse with its major axis rotated through 90° and with the
same magnitude of ellipticity but opposite sense (Figure 2). The transformation

matrix [ T] changing (x,y) into (x’,y') comprises two components: one representing

a deformation of ellipticity given by angle T and the other a rotation of the
major axis by Bc. Thus

cosf -siné cosT J sinT
c c c
(7] =

sing cosf J sinT cosT
C C [ c

By expanding this matrix product and comparing terms with [T] written in terms

of o,6, the relationships between the geometrical parameters and the polarisation
ratio terms may be derived 35(12)

cos2a = cos26 cos2T
tand = tan2t csclf
with the inverse relationships
tan26 = tan2a cos§
sin2t = s8in2a sind

STOKES PARAMETERS AND THE COHERENCY MATRIX

The above definitions are adequate when considering coherent waves

ie waves where the parameters of the polarisation ellipse are independent of time.
More generally it is of interest to consider scattering from fluctuating targets
and in these instances the polarisation ellipse will fluctuate as a function of
time. In particular <Ex> and <Ey> may equal zero for uniformly random variatio?g)
in phase and so in order to describe the wave one must use its coherency matrix "',
This measures the complex correlation that exists between two orthogonal polari-
sation vectors over the period of observation. At the two extremes there will be

either complete correlation in which case the wave is coherent and elliptically

LI
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polarised (ep) or zero correlation which implies a randomly polarised wave (rp).
In general there will exist some degree of correlation and hence the wave is

termed partially.polarised (pp).

Previously the coherency matrix was defined as

2 -Jé&
<E_LE *> <E E *> <a_“> <a.a e s
X X XV X X'y
Jo= " 36 )
<E *E > < E *> <aa e X, <a “>
Xy yvy Xy y
a b-ic J
XX Xy
b+ic d J J
yx yy

Note that:

Trace (J) = sum of diagonal elements = Jxx + Jyy = total power in the wave.

g Alsc, since J__ J_ are non-negative:
o Xx " yy
, det J) =J_ J ~-J J 20
v XX yy Xy yx
.'>':::'
I\l
7$5 For rp waves there are no preferred polarisation parameters and so
i
s Jex = Jyy and ny = Jyx = 0
S
.‘qul
e 1 0
Al [3] = 1
L. 0
-‘::J'
g
B At the other extreme, for ep waves a a 6 are time independent so
o Xy xy
.;{;
- Jé =J§
00 det (J) = a za 2 _ a 2& 2 e Ve W . 0
.._' x y x y
M1
p. o
T P Q
% (3 = PR-QQ* = o
i Q* R




Of particular interest is the decomposition of a partially polarised wave into
the sum of an rp and and ep wave

J = J +J
PP rp ep

where

I ny 1 0 P Q
J - J_ o= J, =

yx Y.

P,Q,R,I > O PR-QQ¢* = 0

J, = 1+P ny = Q
J - Q* J = I +R
yx Q vy

From the determinant equation

J-W ~1) ~J_ J _ = 0
A

Thus I is an eigenvalue of the coherency matrix given by
I o= J@ s+ £ 4@, + 3,02 - 4 der N}
XX yy' © XX yy

Both roots of this equation are real and non-negative but since P,R # O the
negative sign must be taken showing that the decomposition is unique. As before
the total intensity of the wave is given by Tr(J) = Jox ¥ Jyy and the total power
density in the ep part of the decomposition

T,(,) = PeR = (G, + Jyy)z - 4 det(a?

From this the degree of polarisation of the wave is defined as

4 det(3) \}

(Jxx+Jyy)

p = DRower in ep component
P total power

10

ﬁ.
X

2 av

. e

1=~¢¢4x;~
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STOKES PARAMETERS 3

Of particular interest is the representation of the coherency properties by g
four real quantities instead of by the complex correlation matrix. One such f
choice of quantities was developed by Sir George Stokes in 1852 for use in ;:
vibrational theories of light propagation in the ether. They are formally ﬁ
defined(13) as the four components of the associated longitudiral vector of i

. the polarisation spinor P as defined previously and as such allow the use of the

(14)

Minkowski model of Lorentz space for handling polarisation problems. They

-

MW SRR

are related to the elements of the coherency matrix as follows:

~
- i)

b = 10t 30 = @@ = T - e ;
8y = 10 -3) = H@-ad) = <812> - <a72> ;
g = 10, +J ) - b = <a)3) cosb),>
gy = ii(ny - Jyx) - c = <aa, sind >

13" § WA NN

g = (8,8, 8, 8;) is a Stokes vector

Physical interpretation may be placed on the elements of g by considering the

* E :
.

case where the coherency matrix is represented in terms of (h,v) base. Under

-
Y

LT IR S

these circumstances g, represents the total power density of the wave; g, is a

‘f

P g
1

o~ § 5

a_r

measure of how much like vertical or horizontal the wave polarisation is; g, &

similar measure of * 45° nature and 8, a measure of the ellipticity of the

(Y

polarisation, .
N
A derivation of the Stokes parameters from the coherency matrix may be had S

by considering an expansion of the latter in terms of the Pauli spin matrices(‘s)

51 g

09297197195 given by

&
+"a

Pl

PP v s v ..
R S

M}

[1 0] [O 1] 0o ~-i 1 0

o g = [o} = o - o -

I ° o 1 ! 1 o, 2 i o 3 Lo -1 L
:}: These four matrices form a representation of a2 mathematical group with the L
IE following multiplication table: j?:
5K b
v o
“~ e
4 ,.\.

5:4 11 :

”
|
P

(4



% oy 9, 9,

% % 92 3

H oo ~io, io,

9, io, % -io,

04 -io, io) %
It is well known(ls) that any 2 x 2 matrix [ S] may be expanded in terms of this
set so that

3
[S§] = E Su ou
u=0

where Su are the coefficients of expansion given by

sp = Tr{S ou}

For the particular case of the coherency matrix the expansion yields

S0 = Tr(Joo) = a+d = 8o
5, = Tr(Jcl) = b - 8,
82 = Tr(Joz) = c = 8,

83 = Tr(Jo3) = a - d = gl

Notice the change of order of Stokes parameters when compared with the previous
definition, an unfortunate complication arising in many areas of polarisation

algebra and one which causes untold confusion when carried through to scattering

T LT
g k.

matrix theory. The above is known as the natural ordering of Stokes parameters

L
EQ and is frequently used in optics whereas the previous definition is termed
S’ traditional. Unfortunately in the radar literature(s) there is yet another

o

permutation used and for want of a better name I shall call this the radar

e

ordering. This arises from defining the Pauli matrices as

12
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Notice that in this case Su must be multiplied by

O O O
o O r O
Q O

-i

o

in order to achieve real Stokes parameters.

In the radar ordering the Stokes vector takes the form

g = (8y 855 855 8)

To transform between the different systems the following matrices must be used

T - [~ i
89 1 0 o0 O g0 1 0 0 O g
g N O 0 1 o By ) 0O 0 o0 1 8,
g, o o o0 1 32 0O 1 0 0 g,
g 0O 1 0 Ofsg O 0 1 O0|g
3 n - -3 trad L - 3 radar

Occasionally the so-called modified Stokes vectors are used which are related

to ‘8_ = (80931’32983) by

2
Emo & * 8 ayr = 8
8y = 8,8 = <a 2, - 4
1 0 1 y

B2 ~ &
Brs ~ &

The orthogonality condition for Stokes vectors 8, and Ey is

13
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- ﬁy * 8Ox80y * 8lxgly * 82x82y * 83xg3y =0

Only the traditional ordering shall be considered in the remainder of this chapter

since it leads most conveniently to the Poincaré sphere representation of
polarisation,

Comparison of the properties of the Stokes vector with the coherency matrix
gives rise to the following useful relationships.

The determinant condition for J becomes

2 2 2 2
B8y 28 *+8, *8,y

This is known as the condition for physical realisability of the Stokes vector
and for an ep wave becomes

8p " 8 T8 &

g, = 8 " 8, " 0 thus g = (go, 0, 0, 0)
The decomposition theorem becomes

.& = -&ep + E‘rp

2

- 2 2 }
Bep ((8," + 8, + 83" 8y 8ys 87)

2

2 2
Bp = 8y~ (8" +g +8, )4, 0, 0, 0

Finally, the degree of polarisation is given by

2 2 2,4
. (8," + 8y *+8,")

P g
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The condition for physical realisability states that for an ep wave

The three Stokes parameters (g1 8, 33) may be thought of as the co-ordinates of
a point in three dimensional space with distance from the origin given by 8y
Further, this radius is equal to the amplitude of the wave and as such the loci
of polarisations of equal amplitude is a sphere. 1In optics this is called the
Poinaré sphere, there being a one to one correspondence between points on the
surface and the set of all possible polarisations. Note that this spherical
geometry is only true for coherent scattering and for partially polarised waves
the transformations occur on different spheres(16). It is a feature of the
Stokes vector formalism that it allows the treatment of such problems and as
such forms the basis for a general theory of depolarisation for which coherent
scattering is a special case. Shown in Figure 3 are some examples of normalised

Stokes vectors for some commonly used polarisations.

The transformation equations governing the movement of a point over the

(17)

surface of a sphere are well known from trigonometry and are best represented
by three Euler angles, each representing a rotation about the x, y, 2z axis
respectively. The geometry of this problem is shown in Figure 3 which shows a
right handed cartesian co-ordinate system together with various co-ordinates of
the point P in polarisation space. For transformation of P by an angle v about

the x~-axis the governing transformation matrix for g is

0 o
0 0

0
R (v) = 1
X .
0 cosv =sinv
]

© O O

sinv  cosv
Similarly for transformations by 1 and ¥ about the y and z axes respectively

0 1 0 0

1 0 o 0
R (1) = 0 cost O -sinT RZ(W) . |0 cosy =-siny O
y 0 (o] 1 0 0 siny cosy O
0 sint O cosT 0 0 0] 1
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A general transformation is then written

K = R () R (1) R,()

Rather than consider the cartesian co-ordinates of P it is sometimes convenient
to consider the angular co-ordinates (latitude and longitude). In order to see
how these are related to the geometrical parameters of the polarisation ellipse

consider again the original form of the coherency matrix.
<E E *> <E E %
X X Xy
(J] =

<E *E > <E E *>
Xy Yy

In terms of the geometrical parameters

Ex cosb® cost - isinbd sint
E = - a
Ey 8in® cost + icosH sint
Thus
a2
<EE * = <=——(1 + co0826 cos2t)>
X X 2
* a2
<E E "> = <=o—{1 - cos26 cos2t)>
vy 2
a2
<ExEy*> = <ﬂ-iz--(sinZe cos2t - isin2t)>
<EE * = <2 (sin26 cos2t + isin21)>
yx 2
Thus

16
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8q a
2

8, = & cos26 cos2T
2

g) = @ 8in26 cos2t

gy "= az sin2t

From standard spherical trigonometry these are seen to be the equations relating
spherical polar to cartesian co-ordinates and hence the remarkable result that
the latitude and longitude of a point P on the Poincaré sphere are 21 and 26
respectively where 6 and T are the inclination angle and ellipticity angle of
the corresponding polarisation ellipse (Figure 4).

The relations between 6,1 and a,8 (the polarisation ratio parameters) are

4
% again standard results from spherical trigonometry(ls). They form the elements

,céﬁ of a spherical triangle as shown in Figure 5. The a,8 co-ordinates figure
N prominently in the theory of null polarisations.

fo The Poincaré sphere has the following interesting properties:

o

o

V3

a. The poles of the sphere represent left and right circular polarisations
(r = + 45°),

b. The upper and lower hemispheres map similar sets of elliptical polari-

sations with opposite sense., The upper hemisphere is chosen arbitrarily for
n{;‘ left sense polarisations (positive 7).

.&bq ¢c. The loci of polarisations of equal ellipticity are in planes parallel

R to the equator which itself represents the set of all linear polarisations.

d. Orthogonal polarisations lie diametrically opposite on the sphere.

N

b .It is worth noting the similarity between the Poincaré sphere and its plane
?:: projections(lg) and a similar geometry used for impedance calculation in circuit
iE% theory. Indeed the Smith chart is a projection of the impedance sphere and may
 52 be similarly used to solve polarisation problems, This commonality between two
?fj seemingly different areas of work can be quite useful for understanding
2%
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transformations on the sphere(lg). The similarity arises out of the fact that

p is a complex ratio of like field components in a plane perpendicular to

direction of propagation while the impedance Z is a similar ratio of electric
and magnetic field components. '

Although the Smith chart could be used for polarisation problems the most
comnon plane projection used is the Polarisation Chart as shown in Figure 6,

Note that two such charts are required to allow for mappings on both hemispheres,

i e aeewwmar - e -

the chart being a projection of the sphere onto the equatorial plane so that linear
polarisations lie around the circumference with circular in the centre. There o
has also been a scale change in order to give a linear reduction in eccentricity
from unity in the centre to zero on the circumference.

RECEPTION OF POLARISED WAVES BY AN ANTENNA

- SENEEN & _B__

In this section an expression will be derived for the power received by an
antenna whose polarisation is fixed as P, being used to receive a plane wave with
polarisation Q. An ideal antenna will be assumed for the sake of clarity and the

more general problem of non-ideal antenna characteristics discussed in a later
chapter.

The polarisation of an antenna is defined as the polarisation of the wave
it radiates on transmit (remembering that this is defined in a right hand set of
X,y¥,2z co-ordinates where the positive z direction is pointing in the direction

of propagation of the wave). Using the geometrical parameter representation we
may then write the antenna polarisation as

AL A TSI RN | T AFAAPATE A . Lt

cos® -sind COST
R p P
P = 3
p p » [ I3
sinb coséb 181inT
P )% P

1 '

SRR 1 DRSS

ap is the gain function of the antenna. The geometry of the problem to be

solved is then as shown in Figure 7. The important point to note is that Q is

defined in its own set of right handed co-ordinates which are different to those ﬁ

of P. One system is obtained from the other by a 180° rotation about the y axis, ﬁ

In matrix notation the x,y co-ordinates may be related as ﬁ
R
=
n
-

18
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Although it is desirable to define the polarisation of an incoming wave in terms
of its own co-ordinate system it is also convenient to derive an expression for
the received power using pelarisations defined in the same co-ordinates since
then the same point on the Poincaré sphere may be used to represent an antenna

whether it transmits or receives.
In its own co-ordinate system the incoming wave is defined by
cosd -siné cosT
q q q

sinf cosf J sint
q q q

In order to express this in terms of the receiving antenna's co-ordinates

‘ 1 0
-3 % - 0o -1 Qq

% cos® cost -~ J sin® sint
q q q q

- a

,4:,"1 q

'cl -3in® cost_ - J sinT_cosb
4 q q q q
R

. It is easily verified that

2 Q (a_,8 ,1) Q (a_,-6 )

B a T = a .- -

A % 'aq %' 7 P9 ¢ q

Thus, if a wave of polarisation Q_ is incident upon an antenna, then for that
antenna to be matched to the wave in the x,y plane it must not have the same

polarisation as Qq but the one given as Qp, ie opposite sense and negative

inclination angle. This is called the symmetric polarisation to Qq and is shown

. geometrically in Figure 8. This may seem a remarkable theorem and has certainly
. been at the root of much confusion in the past but is easily verified by
§g3 considering transmission between two facing antennae, both of which are polarised

at 45° linear. In this case they are orthogonally polarised to each other and so

19
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no power will be received at all., In fact it is only for vertical and horizontal

that the symmetric polarisation is equal to its parent.

Also shown in Figure 8 are two other useful polarisations related to the
same parent 6. The conjugate polarisation is identical to ﬁq except for a change
of sense and is given by

Qc(ac,e rc)

e’
The transverse polarisation has the same sense but negative the inclination angle
Qt(ac’-ec’Tc)

These polarisations are useful when considering the backscatter from targets with
certain symmetries. Figure 9 shows how these polarisations relate te their
parent on the Poincaré sphere. It is convenient that by adopting the co-ordinate
change described we can dispense with such transformationson the sphere and write
the equation for received voltage as

v:?-“ -?.A

Qp QRq

where P and Q are defined in their own co-ordinate systems and the dot product

for complex vectors is defined as

) . io in ia iB
a*b = g e b e +a e y b e y
X X y
where
ia iB
a e X b e X
. X . x
a = ia b = iR
a e y b e yJ
y y

Note that from this definition

- 2 2 2
a-a = Iaxl + Iayl = a
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Before working out an explicit form for V it is worth noting a useful form of
polarisation matrix algebra, based on the Pauli matrices discussed earlier,
vhich allow a short hand approach to be used in sclving what would otherwise be

lengthy trigonometrical calculations. We know

. cosé ~sinb}| cost
P = ga
sin9 cosfflisint

The 6 matrix may be expanded in terms of the Pauli matrices to yield

cosb -sinb

-850
= cosf 0.~ isind o = e 2
0 2
siné cossH
Similarly for the 1 dependence
COST cosT isint][1 1
10
1
= = e
isinTt isinT cost||l O 0
And for the sake of completeness
elv 0
Vo,
=  cosv OO + isinv 03 = e
-iv
0 e

e This extension of the exponential notation from ordinary complex number theory
N . . . . . .
Ai:? to Pauli matrices is a powerful technique and allows the general polarisation
W, o, . .
ot ellipse to be written as
Ll
o
i*l . -80, T0, |1
* 8" ﬁ 10 2 1
\%5 = ae e e
0

- "The following rules are useful for exploiting this algebra:
.4 )"
ﬁ?v (a+8)o, oo, Bo,
Lo, 1, e = e e e

e

R - S

. -
o
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(a+B)o,
e = cos(a+8)oo + isin(a+6)02
ao, 802
e e = (cosaoo + isinaoz)(cossoo + isinsoz)
= cosa cosB + icosa sin602 + isina cosBo2 - sino sinR
= cos(a+B) + isin(a+B)02
2. 9 eacz = e—aoz 9

ol(cosaoo + 151na02) = (cosao0 - 151na02)01 (see multiplication table)
Bo1 Bo1 g,

3. e e # e e

acz Bal Bol a02 . )
e e - e e = 2 sina smBo3

Using this notation the expression for received voltage

Vo= P
ia -6 0 T 0,1 ia 8 o -1 0,1
= 3 e e 2 e 1[ ] ca e 989 2 1[ ]
P 0 q 0
i(a 40 ) =1 0, ~(8 +6 )o T o.rl 1
= a2a e P 1 o 4 1 e P 9 2 e P 1[ ] . [ ]
Pq 0 0

—qul Tpcl 1 1
= Ae 8(0 +8 )o. -~ 1 sin(® +6 )o.) e .
(cos( p q) 0 sin( p q) 2) [ ] [ ]

And considering only the central portion

22
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(.-t )o (t +1 )o
cos( +6 ) & P 9 1+isin(e +46 )og. e P 4 1
P 4q P q 2

put 6 + 8 = I0 T_ -1 = A7 T +T = It

= cosze(cosAToo + 1sanTol)oo - 1s1n2602(cosZTco + 131n2101)

= cosI@ cosAToo + icosI® sinA‘ro1 - isinI® cosZTo2 + sinZ® sinITt io

3

in matrix form this becomes
cosif® cosAt - isinl6 sinITt sinf6 cosIt + icosI® sinlrt
-sinl® cosIT + icosI® sinAT cosIf coslAt + isinI® sinlt

and when multiplied out the expression for V becomes
V = A(cos(®_+8 ) cos(7t_-1_) - isin(6_+8 ) sin(t_+1
(cos( p q) ( p q) ( —_ ( D q))

The received power is given by vv*

2 * 2 2 2 . 2 .2
P = |V w YUV* = AT (cos”(8 +8 Jcos (T -1 ) + sin“(8 +8 )sin (1 +7
[v] |Al%(cos" (8 +0 Yeos“(1 -t ) + sin(e +6 )sin®(r +1)

and by using the relationships
2
cos“® = }(1 + cos26)
.2
8in“0 = (1 - cos28)
cos(A+B) = cosA cosB - sinA sinB
cos(A-b) = cosA cosB - sinA sinB
.thi: becomes

2 2
a “a

p = 2.9 [1 + 8in2t 8in2t + cos2t cos829 cos2t cos828 - cos2t sin26 cos2T _sin2d |}
2 P q P P q q P P q q
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This is & fundamental equation in polarisation analyses and as such warrants ;Cﬂ
further comment. Note that for maximum power received the conditions ﬁj
ol

g = =-p and 1 = T must be satisfied. -’

P q P q g

In this case o0
4

o

P = a “a 2 P;’:'::

P q -

"

Notice that the condition on the ellipticity is not as might be expected since Sad
it states that maximum power is received when the incident wave has the same E;
’ v‘:':

sense as the antenna, when both are quoted in their own co-ordinate system. This e

is due to the fact that the sense of polarisation changes not only with the
rotation of co-ordinates provided by o4 but also depending on the direction of

observation, ie either parallel or antiparallel to the direction of propagation.

There are four independent power measurements required by an antenna in

-~

order to determine Q as evidenced by the equation for P. Usually the four used

are linear vertical and horizontal, +45° linear and a circular polarisation(zl)

LS
R
l‘l

,./
0
’ L

y and this allows the determination of (9q Tq). Alternatively a dual channel Y
r. ’ o . . P’ % .
;:j receiver could be used measuring simultaneously the vertical and horizontal %g-

' R X
?4 components of Q and as long as some measure of the time phase angle between V éﬁi
E! and H is provided this allows for the instanizneous measurement of polarisation. s
e This latter technique will be used later in order to determine the scattering Y
N N
Sx from targets. j{::

) L)
l! In terms of the Stokes parameters the equation for P takes on the form of N,
\,—V .'.' -
o a dot product, namely .{i:
!' - '..I ‘..
v e
) -

e
»
lll

P = gyhg * gjhy - gyh, + g3hy

Rl

e,
&

where

YRR

.
T P B

' TV AAARAAL oLl
3
1

g = (go g, 8, 33) - Stokes vector for Q, the incident wave ﬁﬂ!
?{ :i;i
% h = (hO h1 h2 h3) - Stokes vector for P, the antenna polarisation ?{ﬁ
! '_':-,i
R: o

o

/
» o
‘_‘ - 24 N __j

v ‘e
’

i
:




Motice that this may be written in matrix form as

- o
1 0 o ofg, hy
0o 1 0 0 gy h
P = ‘ . 1 - [M] a " h
o o -1 ole, h,
o 0 o 1]e h,

In general the received power Pr will not be a maximum and this leads to the

definition of the polarisation efficiency

r = —3 3 ‘ . r =1 for polarisation matched antenna
I' = 0 for orthogonally polarised antenna

On the Poincaré sphere P may be mapped as the antenna polarisation and then ﬁi

lies diametrically opposite. If Q is the polarisation of the incident wave the

polarisation efficiency may bz related quite simply to the angular separation

between P and Q as follows. Figure 10 shows the two polarisations mapped on the

sphere with 2y the angular scparation. Figure 11 shows the so-called power

~

density semicircle from which it is evident that the normalised power in Q is

coszw + sinzw = 1

If Q is then decomposed into (P ?l), the fractional power contained in the P and
?l componsnts is coszw and sinzw respectively. From the definition of T this

means
' ' = coszw

This relationship is of great interest in polarisation filter design since it

clearly demonstrates that the loci of constant response are circles centred on
the antenna polarisation. One of the reasons the polarisation chart is used as

.a plane projection is that circles on the sphere translate to circles on the

chart and so allow the design of filters with the desired response in polarisation

(7

space ‘.
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i TARGET SCATTERING MATRIX
s
' .‘:‘ o 1] L] .
W In general terms a radar target may be described as a polarisation trans-
ﬁ: former in that it operates on the incident wave such that the polarisation of
[}
;ﬂ the reflected wave bears a complicated but deterministic relationship to the
%
X incident polarisation. Further, the nature of this transformation will depend
I ‘1
2 on the geometry, surface structure and material composition of the target and in
W the remaining part of these lectures it will be shown how by making appropriate
‘;3 field measurements and processing the data in the correct way this information
 §: nay be made available for enhanced target detection and target identification.
o
g
-zl For a complex radar target like an aircraft the scattering will not only be
- .‘.' E] [ [ 13 .
b 2 function of incident polarisation but of target aspect and radar frequency.
 §3 It will be assumed initially that these are fixed and that the scattered field
";. [] . » . .
R parameters are linearly related to the incident field. The polarisation trans-
ﬁf forming properties may then be expressed as a transformation matrix, tne polari-
s

saticn scattering matrix. The dimensions and form of this matrix depend on the

representation cf polarisation used: for coherent scattering the incident and

YA

reflected waves may be expressed in terms of polarisation base (x,y) and the

matrix is then 2 x 2 complex (Figure 12). Note that in general eight measure-

. 9

fE; ments will be required; four amplitudes and four phase angles, for the determina-
f;% tion of this matrix.

3 If the Stokes parameters had been used then the scattering matrix would be
52@ 4 x 4 and real (Figure 12). This then requires sixteen amplitude measurements

;ﬁ to be made but will contain extra information above that provided by the coherent
f#ﬂ matrix since it is based on the more general Stokes vector formalism. This

g:' matrix is known as the Stokes reflection or Mueller matrix and is of fundamental
Eﬁl importance in describing the scattering of partially polarised waves. In 1870,
i;; Huynen(5 ) developed a decomposition theorem analagous to the decomposition of the
%? coherency matrix enabling a set of average coherent scattering matrix parameters
713 to te obtained from the Stokes matrix. In this chapter we shall consider only

'33 the coherent matri:: and its properties.,

Xy

? For [S] in (h,v) we may write

o~
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E, syl € 0 syl e V|5,
scattered transmit

Eg = [S]E,

It is assumed that [S] in this form has been premultiplied by 04 80 that the h,v
axes are the same for transmit and receive as required by the Poincaré sphere
representation. In the notation employed Sxy means transmitting polarisation x
and receiving polarisation y in both amplitude and phase.

The voltage received at a pair of antenna terminals for fixed transmit

”~

polarisation PT’ receiver polarisation ﬁR and target scattering matrix [S] may
be written

V = ﬁR-[s]f’T

For monostatic radar systems (ie ones using the same antenna for transmit
and receive) various simplifications may be made to [S].

The absolute phase of the target is a function of its range and velocity
and as such is not a tavget related parameter (unless doppler type analysis is
required). Therefore there is no loss of generality if one of the phase angles
in [ S] is set to zero and the others measured relative to the corresponding

phase centre on the target. This thien reduces the number of required measurables
to seven.

For monostatic systems the reciprocity theorem for antennas demands

V = PA « [8] PB = PB s [8] PA

but
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ﬁ which implies
q T
(517 = (5]
YA
e
;\E This means that for monostatic systems the scattering matrix is symmetric
W
le Swv * S

If the phase of these diagonal terms is taken as reference then the so-called

relative scattering matrix results

&

&
Jo,0. =0
T HH *Hv | :
5 En |Syy! e ISy Ep
2 - A
N[

) E, [Syy! Isel e 7 [,
AN receive =transmit
FLY

%
o This matrix is determined by measurement of five parameters, namely three

amplitudes and two relative phase angles.

!.
Y '-{“‘fr":
AR RALRL

e e = 3 '

Occasionally another 2 x 2 target matrix is used, called Grave's Fower

matrix it is related to [S] as follows:

%:
.‘!‘l ‘ -

AN

h

o] The scattered power is given by
B

S E, = EFIsIVIsl B, - E:TPEt

¥
w

s*Ts =

R -
-]
]

" -’ ._‘“*" s .
N

»*
o

where §1* is the transpose conjugate of [S] and P is Hermitian. For example, in
(h,v)

,w
LT
> W

-
3

L
3zl
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Thus 'a' is the total available backscattered power in the horizontal component

due to both the SH

had by transmitting four different polarisations and receiving the total power

H and SHv elements of [S]). Measurement of this matrix may be
backscattered in each case. This matrix contains & subset of the target informa-
tion contained in [S] and so will not be considered further in these lectures.

Figure 13 shows some examples of the relative phase scattering matrix for

simple radar targets. Note that all these matrices are quoted in (h,v).

The identity matrix is indicative of reflection from a flat plate at normal
incidence or from a trihedral retroreflector (both are same in a polarimetric
sense) while the double bounce dihedral reflector has a 180° phase difference
between HH and VV. Also shown are some other important scattering types such
as the linear target and helix both of which are important when considering the

classification of targets as will be covered later in this course.

The most powerful aspect of scattering matrix measurement is that it allows
the prediction of target scattering for any transmit polarisation and as such
provides full polarimetric information about the target.

The transformation equations governing the prediction of target backscatter
in base (x,y) when it is known in (x',y') may be developed using the change of
base matrix [ T] derived earlier. Care must be taken however to remember cthat
[S] is an operator relating an incident to a backscattered wave and as such,
co-ordinate changes must be taken into account. The following relationships
hold:

1. [T] is a unitary matrix operator with unit determinant

-1

[T) = [T]*T det(T) = 1

29
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2, For the incident system
E (x,y) = [1] E, (x',y")

3. For the scattered system

Eg(x,y) = lTl*Es(X'.y')

Ca
:f% The conjugate operator is employed because there is a change of sense of
Y polarisation when the scattered co-ordinate system is observed from the trans-
;1ﬂ mitter co~ordinates.
e
iﬁﬂ From the definition of the scattering matrix

n Es(x’Y) - [S(xoY)] Et(xay)

oo

B = [sG,WIT E (x',y")
RO

;W. From 3

) Ex',y) = (17 E (x',y"

E ',y = [TsGpIT E (x,y)
%4

48 :

Lt Thus in general the transformation of [§] is given by the congruent transformation
45

i3 [sax',y")] = [T (s,
2

'-55 1 1 -p*

- (1 = =

Oy *op P 1
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and expanding the matrix product, the transformation equations become

=1 2 .
sx'x' - (1*99 ) [D sw + p(SXY + SYX) + Sxx)
s - (1+oo*)-1 [P Syw = 0¥y + Suy = pp'S
X'y! YY XX XY YX,
- w1 . — ank
Syrx (1+0p™) " [p Syy = P"Syy + Syy = PP Syy)
- w =1 %2 ok
Syryr (L40p™) " [p "Syy + Syy = P (Syy Syx)]

For monostatic scattering these simplify to

S

(1+0o™ ™Y (%5

X'x' v + ZSXYp + SXX]
s . (1400™) 7 [p8uy - p¥Suy + S (1=pp™)]
X'y YY XX XY
- * -1 - * - *
Syrx (1+4pp™) [pSYY P Sy * Sy (1-PP )]
-1 *2
szyﬂ - (1'*9(-"*) [o Sxx + SYY - D* ZSxY]

Note that the symmetry of the monostatic matrix is preserved under this trans-

formation. The following quantities are also invariant under change of base:
a. det(S(x',y")]) = det(ITIT) det S(x,y) det T = det S(x,y)

b. Tr(P) = total power returned to a pair of orthogonally polarised

antennas = Span([S]) = invariant.
These equations are quadratics in p, where p relates (x'y') to (x,y). For
example, if [S(h,v)] is known then [S(left circular, right circular)] may be

predicted by setting p = J. Then

S,..,+8

Sun~Syv e 1s 5 2wy
) HY 3
[S(2,r)] =
5 SwSw Sw™m , .
7 7 HY
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Substituting the values for the trihedral gives

1 o

and for the dihedral

1 0
s(e,r) =
0 1

This confirms the fact that for each reflection off a metallic surface, the sense

of polarisation is changed.

The congruent nature of the change of base transformation has geveral
important implications for interpretation of polarimetric data and in particular

the following theorems are important:

1. Theorem 1: Any square matrix [S] can be transformed to diagonal form

by unitary matrices M and Q such that

MSQ = D = a, GiJ GiJ ~ Dirac delta function
Proof
*T *T *T *T *
[ MSQ] Q 'S M a GiJ

Now premultiply

RO,
A A

Y

AT KT *T *T _*T *
Q °S "M "MsQ Q 'S "8Q aa, GiJ

-

ﬁ;% Since Q is unitary

e

e 1 *T

%

Y Thus Q is the unitary matrix which diagonalises the Hermitian product
\ *

At S TS by a similarity transformation.
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By post-multiplying we have

T T

AT *
MSS" M = a.a,%

*T T &
MSQ Q@ 'S 'M ii id

Thus M is the unitary matrix which diagonalises the Hermitian product
*
ss T by a similarity transformation.

I1f S is assumed to be symmetric then M = QT

MSQ = D
QTs™? = DT = QlsM’ = D
oM o= QF

Hence we arrive at the very important result that under the change of
base transformation the coherent scattering matrix can always be

diagonalised

ie [TINASHT =

This is a result of fundamental importance since it implies the
existence of polarisations which remain unchanged when incident upon
the target. These so-called eigenpolarisations form the basis for the

processing techniques to be described later.

Theorem 2: The power matrix P is diagonalised by a similarity trans-

formation using the same unitary matrix Q which diagonalised the
scattering matrix by a congruent transformation and the eigenvalues

of P are real and equal to the squared magnitude of the eigenvalues
of [S]

T

Proof P = S§° S and so by 1. the theorem is proved.
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MEASUREMENT OF THE SCATTERING MATRIX

There have been very many different techniques proposed for measuring the
target scattering matrix and a good review of these is provided by Huynen(21)

In this section only the basic requirements will be outlined and some of the
limitations and problems pointed out.

The scattering matrix with absolute phase may be measured using a coherent
radar with a dual channel receiver capable of simultaneously receiving two
orthogonal polarisations and providing I and Q outputs for each channel
(Figure 15), The transmitter must then transmit two orthogonal polarisations
such that the four complex elements of [ S] may be measured. Ideally, the whole
matrix should be measured at the same time but this requires some form of coding
for the two orthogonal transmitted polarisations so that the matrix elements can
be separated on receive. The easiest way of doing this is to time multiplex the
transmit waveform such that in a pulsed radar the transmit polarisation is
changed on a pulse to pulse basis. Thus it takes 2 PRI to measure the matrix
but isolation of the matrix elements is guaranteed. Note that if a priori
knowledge is available about the targets to be measured then it may be possible

to reduce these requirements but in general this will not be so.

The two main components needed for the SM radar above those of a conventional
fixed polarisation device are a polariser in the transmit channel and an ortho-
mode coupler (OMT) in the receiver. The latter device is a standard microwave
component and allows the separation of an incident elliptically polarised wave
into two orthogonal components. The polariser may take many forms such as a mech-
anical switch between vertically and horizontally polarised feed channels or a
single rhannel Faraday rotation device with a ferrite phase shifter for
generating elliptical polarisations. Whatever the configuration, the transmitter
must be able to switch alternate polarisations at the PRF rate., This brings into
play an important problem in the measurement of scattering matrix. If the target
moves during the 2 PRI time-period necessary to measure the matrix then the
measurement will be inaccurate and if movement is too severe and the time period
too long then phase determination may be impossible. Thus coherent measurement
of the matrix is reserved usually for carefully staged range measurements or for

high PRF radars where the target motion is knowa to be within a certain band-
width less than the PRF.
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The problem may be overcome by measuring the relative scattering matrix,
since then, absolute movement of the target over the period of matrix deter-
mination is less critical. A schematic diagram of a pulsed radar suitable for
measurement of the relative SM is shown in Figure 14 together with a typical
measurement switching programme. The essential difference between this method
and the previous one is in the measurement of phase angle. This latter technique

does not require a coherent radar since the PSD may take one of the received

v e

channels as its phase reference and so provide a measure of the time phase .
difference between the two orthogonal polarisation components. The PSD must be -

able to unambiguously determine angles in the range

o o
-180" < ¢PSD < 180

One interesting possibility is to mix bases, ie transmit on base (x,y) but receive i

base (x',y'). If the relationship between these bases is known as

)Y
N »
b, .

A E(x,y) = [T] EGx',y") N

» :

o i

o then the measured matrix [ Q] may be converted into the same base by .

oY :

k ‘. [} [} y :.‘

‘:‘:J E(x 'y ) = [Q] E(X,}’) K

AS o
L »
. = [Q[T] E(x',y") .
o
L w ¥
ey
.gﬁ This technique may be of use when there are limited dynamic range problems in
oo .

N the radar receiver. i
& ;
e To date, measurement has been considered using ideal antennae and a noise .

~ , b3

) free system, In order to consider a more realistic system it is necessary to be e

T able to quantify errors introduced by using real antennas which have finite %

A lcsses and cross polar isolation. In order to do this one may consider a trans- -

&: mission matrix for the antenna. In other words if polarisation vector P is Q
\ .. . . . >

:g requested for transmission, what will actually be transmitted is ~
“

) ‘ é
. P' = [E] P

<8 N

K> =

.¢§ For an ideal system [E] will be the identity matrix but for real systems will o

o represent a distortion of ellipticity At and a rotation of the plane of polarisation é:

b3

<
IJ‘
-‘(\
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A8. If losses within the anteuna are assumed small then [E] will be of the form

e
coslf -sinA® cosATt JsinAt e 11 €12

[E] = - €59
sinAf coslAB ]| IsinAT cosiAt €1 e

where €11° €99° €1ps Epq aTe corplex and Re(ell) <0, Re(ezz) < 0, the equality
holding for zero losses. €,y are functions of position within the antenna beam

and as one deviates further ficm boresight these errors tend to increase.,

. . * . . . A
On receive the matrix [E] ~ operates on the desired polarisation Q, so the
net effect on measurement of [S] is the congruent transformation

1. [E]T[S][E] [E] - unitary for lossless antenna

[ s]

In reality losses may arise from heat loss, reflections from support structures

and radomes. In this case [E] is non-unitary and the determinant and Trace of

[S] are no longer invariant under the above transformation. Using the above form

for [E] and putting

11 12

o 21 S22
!

gtf yields

- e “S.. +¢e,. S S., + +

21 53 12 * %1251 * £2150;

o S21 * €12517 * €150

q -

where

r

. -t [l )~
. o0

X

% S

By R M‘r’ -
SERREEL
wm
N w
L}
w
[
~N
+
w)
[ 5]
—

.-'
AR

¢ R A N SO AL
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Notice that if 812, S,, are small relative to the copolar terms then because

21

Ry 9y 8TE small, the copolar elements are less susceptible to error. The cross-

polar terms however are more inaccurate,

In order to try and calibrate these errors in a system then at least two

calibration targets are required with known scattering matrices. For example

[s] = A - 8' = Ae

(9%
(@]
fusy

2 812

hence can get £13° €o1° which relate to the cross-polar isolation of the antenma.

If
€
2
P © el © €12 * €21
[s] = A!. => S' = Ae e
2
0 1 €19 + €51 e
and if the absolute RCS of calibrator is known the €1s €, May be determined.

Two targets which correspond to these calibration matrices are a trihedral and
\ . , o . . .
dihedral with its seam at 45 to the radar vertical. If these calibrations are

made and the scattering matrix measured within the target's scattering centre

X decorrelation time reliable SM data may be collected and made available for

N processing. Note that if the Stokes parameters are used then they give a direct
o measure of the polarisation purity of the received wave and its susceptibility
== to noise.

X
oa e TARGET PARAMETERS

v

Lo
L . . ,

] By measurement of the five parameters of the relative phase SM in some base
S , N . . . . ,
juj (x,y), the scattering for any incident polarisation, given by the loci of points

L
AN on the surface of the Poincaré sphere, may be predicted by the transformation
A P
E -,

Pty . equations derived earlier. The question arises as to how best process this data
i
R in a manner which will yield information relating to target geometry and symmetry

"- N . 3 3 . . .
Fﬁ; independent of which base is chosen for measurement. It will be shown in this
:ﬂ: section how such a set of five target parameters may be derived and how they may

be used to improve radar performance.
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The target descriptors are based con knowledge of the so-called target
characteristic or null polarisations. These are transmit/receive polarisation
pairs which result in zero target backscatter. There are in general four such
polurisations and every target, however complex, has such a set. The proof of

the existence of these polarisations is based on theorem 1 from the previous
section, namely that there always exist two polarisation vectors which diagonalise

the symmetric scattering matrix.

The two polarisations corresponding to the diagonalisation of [S] are termed
the eigenpolarisations or cross-polar nulls (XPOL) in that when they are trans-
mitted they remain unaltered on reflection, so that by receiving in the orthogonal
channel a null response would be obtained. Care must be taken when calculating
these polarisations since as usual the co-ordinate frames must be related so
that the Poincaré sphere representation may be used. When allowance is made for
the conjugate nature of the backscatter co-ordinates when compared to the trans-

mitter then the eigenpolarisations are solutions of

[s] E. - AE%: A - complex eigenvalues

It is now apparent why these are called eigenpnlarisations since this equation

is similar to the classical eigenvalue problem
[S1E = 2E

The conjugate sign in the polarisation problem forces the corresponding eigenvalue
to be phase determined whereas in the more commonly met form of eigenvalue problem,
if X is a solution then so is Aeis 0< &< 360°.

From theorem 2 the eigenvectors of [S] are the same as those of S*S and the
latter has real eignvalues given by the square moduli of the eigenvalues of [ S].
When the eigenvalues of [S] are distinct then it may be shown that the two
corresponding eigenvectors are always orthogonal.

Proof let A,, A, be the two eigenvalues and A, > )

1’ "2 1 2

then [s] E, = » E)
[ 8] Ez - )‘2 E’Z*
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Since [S] is symmetric
[SlE) B, = By * [SIE,
1A 1B} - Eol = 13,0 [E, - E,*

hence if Al % Az

*
EI.EZ = 0
This is the condition for othogonality of polarisation vectors.

On the Poincaré sphere EI’EZ lie diametrically opposite and so knowledge of
one immediately determines the other. Thus two of our desired target parameters
are the latitude and longitude or ellipticity and inclination angle of omne of the
eigenpolarisations. The one chosen is the eigenvector with the largest corres-
ponding eigenvalue since the maximum RCS of the target is given by the square

modulus of the maximum eigenvalue.

Proof
Al 0
Pror = IDIE * [DI"E* [D) =
0 Az
= (alDJE, + BIDIE,) (a* DI * E;* + b*(DI* E,")
= lal® g l? + [b1%,)2 since E; Ef = 6

= *
DE; ME)

2 2 2 2
12 - 1612 1% - 1aylh

Hence if [All > IAZI then maximum power is obtained if |b| = O ie the maximum

polarisation E =£ and P = |) |2. In the above
max 1 max 1

2 2
E = agl - bEz and |a| + |b| = 1
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This maximum polarisation is the third target parametsr and is obviously of

 great importance to radar systems since it is the maximum RCS that may be

obtained for a target at a fixed aspect and frequency.
Another method of calculating the eigenpolarisations is to consider the
general transformation equations, quadratic in p. The eigenpolarisations are

seen to ba solutions to

S = Q0 = p§

oo ok
Xy vy T P Sxx t Sxy(l = ee?)

This equation may be solved by noting that $*S has the same eigenvectors as | S)
and is diagonaliged by a similarity transformation

1 g*s T

If this matrix product is expanded then for the off-diagonal terms to be zero

the equation

pzb +pla=c) - b* = 0

where
8 = SyySex’ * SyySyy
b o= SyySex’ * SyySyy
¢ SySuy™ * SeySyy
80

R Wl Wi
1,2 2%,
2 2
Ry = Isyyl” = Iyl
* *
Ry = SyySey™ + SeySex
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These equations give two values of p corresponding to the two eigenpolarisations,

By writing p » tana eJ6 then the latitude and longitude of the eigenpolarisations

may be found from
61 = | arctan(tan2a coed)

" } arcsin(sin2a siné)

As a simple 2rample of the eigenpularisations of a target consider the back-
scatter from a wire grid target as shown in Figure 16, If the grid is aligned
at 0° to the incident vertical then the pelarisation of the backscattered wave
will be vertical, independent of the incident pularisation. Thus vertical is
one eigenpolarisation while horizontal is the other. Further, vertical is
obviously the maximum polarisation since for horizontally polarised waves there
is zero backscatter. If the grid is now rotated about the radar line of sight
then these eigenpolarisations remain linear but rotate in the equatorial plane
of the Poincaré sphere.

The remaining two characteristic polarisations are the copolar nulls (COPOL)
or incident polarisations which are transformed into their orthogonal state on

reflection. These may be determined from the transformation equations by

Sy = 0 = pzs + 28,0 + S

XX YV Xy XX

It is these polarisationc which are exploited in rain clutter suppression radars
since spherical raindrops have left and right circular polarisation as their

copolar nulls. Notice that,although in this case the COPOL nulls are orthogonal,

‘'in general they will not be so.

Of particular importance is the relation of the COPOL nulls to the eigen-
polarisations and in order to develop this relationship consider transformation
of the scattering matrix when it is expressed in (xl,xz) where X
eigenpolarisations

1 and X2 are the
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From this we may write [D] in the form

J(¢+v)
me 0 where m = IA I
D = 1
2y 0 m tanzv eJ(¢-v) Y = 90° - o 0<% Yy < 45°
T
i8e, ves=-9° -90°<v<90°
pr 8 !
-

The two solutions satisfying these conditions are

A
Py = +J Kl = tana er

Py = ~J4/— = =tanc eJG )

In terms of the Deschamps co-ordinates on the Poincaré sphere these points are
given by (2yyv) and (~2ysv) taken from the minimum eigenpolarisation RZ' In

order to express the transformations from the maximum polarisation Xl, then
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2y + 180° - 2y and v + ~v, Hence the points become (2a,v) and (=2a,v), where
positive v is taken in an anticlockwise direction from the equatorial plane and
Y.v are angles from [D].

These results are very important since they show an interesting geometrical
relationship between the two sets of null polarisations. As has already been
noted the eigenpolarisations lie diumetrically opposite and now we have the
additional information that the COPOL nulls have co-ordinates (* 2a, -v) from
the maximum eigenpolarisation. Thus all four points lie on one great circle
vhich defines a plane in polarisation space (Figure 17) and the diameter joining
the eigenpolarisations bisects the planar angle between the COPOL nulls. The
resulting structure is known as the polarisation fork and is a powerful graphical
aid to radar target classification studies. The fork prongs are drawn from the
origin to the COPOL nulls and the length of the 'handle' is the radius of the
Poincaré sphere or the span ([ 8]), which is a transformation invariant equal to
the power in the polarised component of the wave. Note that some authors take
the target maximum RCS as radius of the sphere but in order that the results

be consistent with the Stokes formalism it will be taken in these lectures as

ro= g vg,  teyt = S ASD

This now enables us to classify different radar targets according to a five

element target vector given by
VvV = (261, 211, v, Y, m)

The first three angles define the plane of the fork in three dimensions, the
fourth angle is y being the fork separation and relating the difference in
magnitude of target eigenvalues. The final parameter m is the target maximum
RCS. 1In the next section these ideas will be developed further and examples

given but first consider again the diagonalised form of [ S)

A 0
[s] = T DT [D] = [1 ]
o 1,

id+v
me¢

0 m tanzy e1(¢—v)
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Using the Pauli matrix algebra developed earlier we may write

-1101 -6,0

™ = e e 172
-1,0 8,0
*
T . 11,172
0
e, [ ™ ivo
D = ¢ 3 e 3
2
0 m tan'y
Thus
1,0, -8,0, !vc3 m 0 ivo3 1,0, 80,
[8] = e e e e e e
O m tanzy

This form is used when developing relationships between the coherent theory and
Stokes matrix., This is the next logical step in the theory but is beyond the
scope of these lectures. For those interested, further details may be obtained

in references 5 and 15. (See also appendix 1).
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N CLASSIFICATION OF RADAR TARGETS '

In the previous section the target vector V was developed which has five
parameters and precents a full polarimetric descriptor of the target. In this
chapter some time will be spent investigating the form of V for some simple
radar scatterers and outlining a basic scheme for classifying radar targets
according to their polarimetric properties, Note that we are still considering
fixed aspect and frequency data and coherent scattering in the far field of the

target. The problems of scintillating targets and change of aspect and frequency
will be briefly considered later.

- ¢ mmmmme =

Let us define the polarisation spectrum of a target with scattering matrix
[S] by the copolar and crosspolar RCS both given as a function of polarisation.
Shown in Figures 18 and 19 is the spectrum of a simple flat plate or trihedral
target, On these plots 6 is mapped from O -+ 180° versus 1 the ellipticity
(~45° € 1 € 45°). Notice that the copolar plot shows a maximum RCS for all

linear polarisations and a null for left and right circular. The crosspolar

plot shows a maximum for circular and a corresponding null for all linear.

These properties may be summarised by writing the target vector

T

R W i e

Y

o (¢] o o) AnAz
V = (0,0, 0, 45, m) n=— A - area of plate
A

o o il e I

Fore gt NI AL

LB

A = illuminating wavelength

When mapped onto the Poincaré sphere the polarisation fork for this target is as

shown in Figure 20. The fork has maximum angle separation (y) which is indicative

of the copolar nulls being orthogonal. Notice that because the eigenpolarisations

include the whole equator this target is rotation invariant ie there is no change

IR TG T LTRSS VR AT CAS TR Y T S A F T Y S S cenmme_m_ - _-

5;} in the fork if the target is rotated about the radar line of sight.

AR

s

e Compare these results with those for the dihedral reflector as shown in

2

e Figures 20-23. The dihedral is assumed to have its seam parallel to the radar ,
[ ~ )
%—% vertical and thus has two nulls at * 45° linear and maxima for all polarisations E
13‘ EV‘ 3 & --‘
§ﬁ: with 6 = 0° or 90° and -45° € 1 € 45°, The target vector is Ny
R o o -0 o i
o v = (0° 0°, 90° 45° m) <
i >
s "
i?f The polarisation fork is similar to that of the trihedral except for a 90° .
%ﬁ% rotation about the eigenpolarisation axis., This is the skip angle and relates ?
b :

45
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to the number of bounces the reflected signal undergoes. In general however the
skip angle is the phase angle between eigenvalues and so does notlend itself to
such simple physical interpretation. Note that because of the form of polarisa-

tion fork the dihedral is rotation dependent and for a general rotation angle v
the target vector becomes

vV = (2y, 0, 90°, 45°, m)
ie the fork is rotated in the equatorial plane by 29°,

The wire grid target considered earlier has the polarisation fork shown in
Figure 24. 1In this case

o

v o= (2¢, 0°, 0% 0° m)

Notice that the copolar nulls are now coincident and the fork has collapsed into

a straight line. For the grid at an arbitrary angle ¥ it matrix is

coszw {gin2y
{s] =
isin2y sinzw

and as such the fork rotates by 2y in the equatorial plane.

These are all examples of an important class of symmetric targets. The
general form of [S] in (x,y) for a symmetric target is

e21v 0

§ = where (x,y) is a linear base
2 =2iv
0 tan vy e

All targets having an axis of roll symmetry are symmetric at any aspect angle,
eg cones, cylinders, ellipsoids and combinations of these. Other targets like
corner reflectors may have a plane of symmetry through a line of sight direction

and thus be symmetrical targets. All these scatterers have a target vector

v = (8, 0° v, Y, m) iet =0
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This may be illustrated by virtue of Figure 25 which shows a general symmetric
radar target and a proposed maximum polarisation ﬁmax' Because of the symmetry
of the object there must then be another maximum polarisation Pmaxz obtained

from P oax by reflection in the plane of symmetry. However theory states that the

eigenpolarisations are orthogonal and so ﬁma must be either parallel or perpen-

X
dicular to the symmetry axis. For either checice T " O and the eigenpolarisations

are linear.

Symmetric targets are characterised by their eigenpolarisations always lying
in the equatorial plane and are of special interest in radar scattering studies

since many of the most common radar targets show these features,

The class of non-symmetric targets are classified by T # 0, The maximum
value that T, may achieve is + 45° and it does this for a helix target which
has the matrix

1 J I 1 -J

S = or
J -LJ -J -1

left screw right screw

The corresponding forks are shown in Figures 26 and 27 and for these targets

'

’

v = (0% * 90°, 0°, m) :

v

b

Because these represent an extreme in target asymmetry the angle Tm is termed :
the helicity angle. {
!

D)

A class of nonsymmetric targets which has special significance in the :
decomposition theorems of Huynen are n-targets (nonsymmetric noise) defined by '
1. = 2 45° !

m

Thus [ S] has the general form N
.

b -a r:
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Note that the dihedral target may be considered as a special case of an n-target

since

cos2a sin2a
[S] =

sinla =-cosa

So far only single, isolated targets have been considered but in reality radar
targets will be composed of many scattering centres each with different polari-
metric properties and target/radar motion will result in scintillation of the
target echo. In the fixed polarisation scalar theory these fluctuations have
received much attention but little is known of the dynamic properties of the
target vector V and their relation to changes of radar frequency and target

aspect. Certain interesting trends may be pointed out however.

If the target has a few dominant scatterers with different polarimetric

properties then the loci of null polarisations for charge of aspect or frequency

might be expected to cover large areas of the Poincaré sphere but if on the other

hand it consists of reflectors with similar polarimetric properties or many
scatterers distributed within a narrow dynamic range, then clustering of the

null polarisations might be expected. This has been verified for rain clutter

and provides the basis for polarisation filtering whereby controlled suppression

may be had for limited areas of polarisation space. The frequency dependence of
V is an important area of study and has been covered by l!»oerner(8 ). This work
promises to combine polarimetric information with spatial range infcrmation
available from broadband systems and as such provide a powerful theory for

electromagnetic inverse scattering.

The incorporation of full polarimetric information with radar systems has
many widespread applications. The <¢fficient suppression of rain clutter is but
one example and in general any target whose nulls show clustering in polarisa-
tion space may be enhanced or suppressed using these techniques. The important
point to note is that SM methods allow the choice of effective transmit/receive
polarisation to be made in the signal processing and real time adaptation of

these is then limited only by the speed of processing available.

The techniques have application in improving signal to clutter ratio, ECCM,

multipath reduction and radar target identification studies. In particular the
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future will undoubtedly witness the incorporation of polarimetric techniques
with other features of the target's signature like doppler or broadband

interrogation for advanced remote sensing applications.
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APPENDIX 1. DERIVATION OF STOKES REFLECTION MATRIX
The coherent theory may be related to the Stokes calculus by considering F
7“3 again the properties of the coherency matrix [J]. f
% :
N The general polarisation vector (spinor) may be written :
2
DE E -
A X j
4‘ E -
of
; E ’

X

<
. 1o

then

FA e

S

AP L RLE

*)

E* = adjoint = conjugate transpose = (Ex*,Ey

e
Fo

4

SRS L

The products of E and E* are

i 2

&

E'E = I = intensity = scalar

La

v

w

EEY = J = coherency matrix

e \‘ L

L&l LA

‘o'
’ ra:“-_'.

i
i

If the target has x,y corrected scattering matrix [T] then

RS AN, |

E, = [1E E, - scattered polarisation vector

¥ s

W

222524 53

v

Under these circumstances the transformed coherency matrix is

1

\
AT

e

.~

JB - ESES+

LA L

b oo

= (11 J3(D*

KRR

‘E"

AL W .

o From the properties of the Pauli matrices

.
.ot

x 0

f=, g - (00901.02903)

et

.
T

°
A
LI N

‘-'
I o= Zu: 5.6 O, S, = T, 0) w=0,1,2,3
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sus are the coefficients of expansion for the transformed coherency matrix.

Writing this in compact form and using the cyclic property of the Trace operator

Sg = T3, 9)
= 4T.AT J[T %)
= AT (AT* ofT])
= iTr(J gs)
where
g, = [T* 1

The coherency matrix may be written

3 - ﬁz: T.W o))c, v =0,1,2,3
and
o = 42T, 00,
Thus
S5, = izv: '1‘1_(2s ov)Tr(J ov) since (av)2 =%,

- }Z MUV SV

We have now found a matrix M whose element Muv relates the vth Stokes parameter

of input wave to the uth Stokes parameter of reflected wave where

MuV - * Tr (UUS OV)
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iy Thies relationship gives a method of determining the Stokes reflection matrix M

o,

%ﬁ from any given target matrix [ T) f{:
}"q :“;\
o e
B 3, = IMg :

2R

(M = §T.(, o

2
e
.2t
i)

s

,

q
fe;;.‘» where
?3' =
o
) o}
N %! - 1s {.
y % 2 (9 03 Oy 93)
0 928
o
oy o
o8 L 3?..
l" I
e %s% %0s1  “0s°2 %053
°1s°o clsol o1502 01803
* =
s 926% 928%1 92572 92493
s
L]
AN 3% %3s%1 3% 93573
- which after taking the trace gives
vﬁ“
3
:< By M2 M3 “‘uom1
Wi m m
~. 21 M2 M3 Wy
- (M =
o W3y W3y W33 My,
o L’“M Bp2 Ma3  °

This expression for [M] is in the natural ordering and in order to convert to

traditional
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Before working out an explicit form for [M] care must again be taken to ensure

-7

'."i"

that the incident and reflected waves are referenced to the same co-ordinate

?‘7:’

system. [M] has already been corrected for x,y plane co-ordinates through [ T]

but in order that the conjugate nature of reflected wave co-ordinates be taken
into account.
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then we may use (M ' to relate an incident wave P to a reflected wave where
both are defined in terms of the transmitter co-ordinates and write the expression
for received power P as a dot product of Stokes vectors

- -~ 4 -, - Wy W " a T a" h "
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3

v % " r Ny
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P = [M' g g@ g(P) - Stokes vector for P
3(6) - Stokes vector for Q
When multiplied out
T (6. 0.) T o.0,) T (6.0.,) T (o o-;T
r 08 O r 0s 3 r Os'l r 0s 2
T (03509  T(03405) T (o300 T (05,0,
[M' =
T (91690  Tp(015093) T (0y50)) T (07,0,
_Tr(UZSUO) -Tr(°23°3) -Tr(OZSol) -Tr(CZSOZ)
L —
If we put
a b 2
[T)] = and aa* = a° etc
d d
ata a-a
Re(a) = 5 Im(a) = 5
then [M) ' becomes
§(a2+b2+c%4d?)  Ja®-bZec?-d?)  Re(a*b+c*d)  iIm(a*b+c*d)
§(32+b2—c2~d2) i(az—bz-c2+d2) Re(a*b - c*d)  iIm(a*b-c*d)
Re (a*c + b*d) Re (a®c ~ b*d) Re(a*d + b*c)  iIm(a*d-b*c)
iIm(a*c+b™d) iIm(a*c-b*d) iIm(a*d+b*c) Re(b*c - a*d)
 — o

Notice that for symmetric [T], [M ' is also symmetric with nine independent
‘elements. For the general bistatic case however there will be sixteen elements

although symmetry in the scatterer may reduce this number.
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For partially polarised waves, averages are taken of the individual Stokes
parameters and so one may define an average Stokes reflection matrix by

(M) = <[M> where

= <m, .>
av

05 Jav iJ

Huynen's(s)

decompogition is based on the fact that this averaged matrix may be
decomposed into a component with corresponding coherent matrix [ T] satisfying
the condition for physical realisability of Stokes vectors, plus a remainder

matrix which may be decomposed itself into the sum of two n-targets.
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